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ABSTRACT 

We study the algebraic aspects of the regulator problem, using some new ideas in 
the state-space (“geometric”) approach to feedback design problems for linear multi- 
variable systems. Necessary and sufficient conditions are given for the solvability of a 
general version of this problem, requiring output stability, internal stability, and 
disturbance decoupling as well. An algorithm is given by which these conditions can 
be verified from the system parameters. 

1. INTRODUCTION 

The problem of making a given system follow a certain signal in the 
presence of disturbances is, of course, a basic one in controller design. Several 
versions have been under study since the very beginnings of control theory. In 
recent years, much attention has been paid to the underlying algebraic 
structure of the problem. The central issue here is to decide on solvability or 
nonsolvability of the problem for a given set of parameters. Of course, in 
practice the parameters are not known precisely, and the yes-or-no answer 
which comes from the algebraic analysis is related in a nontrivial way to the 
hard-easy scale that is much more familiar to the engineer. Still, we may 
expect that a good understanding of the cases in which the problem is not 
solvable will be of help in identifying the crucial features of those control 
problems that should be classified as “intrinsically difficult.” Moreover, if the 
answer to the algebraic problem is constructive in the sense that it provides 
an algorithm to find a solution if one exists, then this algorithm may also be 
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used as a starting point for the development of software that would be 
applicable to an extensive class of systems. 

Among other factors, these considerations have played a role in the 
development of several different approaches to (what we shall call) the 
algebraic regulator problem. State-space methods were used in [l-7], result- 
ing in a constructive solution for a fairly general version of the problem. It 
was felt, however, that a solution in terms of transfer functions would provide 
a better starting point for investigations involving (small) parameter changes, 
and this was one of the incentives for a number of papers using techniques 
like coprime factorization of transfer matrices [8-161. The solvability condi- 
tions obtained, however, are in part unattractive from the numerical point of 
view (cf. the conclusions of [15]). Very recently, a new frequency-domain 
solution has been given in [29]. 

The purpose of the present paper is to restate the case for the state-space 
approach. We shall use some new ideas to obtain a constructive solution for a 
general version of the regulator problem, involving output stability, internal 
stability, and disturbance decoupling. The main feature of the approach 
adopted here is that it incorporates (dynamic) observation feedback in a 
natural way. (The intricacy of working with observation feedback in earlier 
state-space treatments has sometimes been mentioned as a reason to prefer 
transfer-matrix techniques: see [lo].) We shall give several equivalent formula- 
tions of the main result, among which there will be an explicit matrix version 
that could be a starting point for calculations. This paper improves on the 
results in [18]. The organization of the paper is as follows. After having 
introduced some notation and preliminaries in Section 2, we motivate our 
formulation of the regulator problem in Section 3. Section 4 contains neces- 
sary conditions for this problem to be solvable. These conditions are shown to 
be also sufficient in Section 5, and hence we obtain our basic result. In 
Section 6, we show that this result leads to a completely constructive 
solvability criterion. The “internal model principle” is briefly discussed in 
Section 7, and conclusions follow in Section 8. An appendix is added in which 
it is shown that the problem considered here, when stripped of its “dis- 
turbance decoupling” aspect, is identical to the one discussed in [l] (see also 
[2, Chapter 71). 

2. NOTATION AND PRELIMINARIES 

We shall consider only linear, finite-dimensional systems over [w. In 
general, vector spaces will be indicated by script capitals, linear mappings by 
Latin capitals, and vectors by lowercase letters. Further conventions in the 
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use of letters are as follows. The generic description for a system is 

x’(t)=Ar(t)+Bu(t)+Eq(t), r(t) E xx, u(t) E %, (2.1) 

y(t) = Cx(t), y(t) E g> (2.2) 

z(t) = Dx(t), z(t@Z (2.3) 

Here, x(t) is called the state of the system at time t, u( t ) is the input, q( t ) 
the disturbance, y(t) the observation, z(t) the output. Our controllers will be 
devices that produce a control function u(t) from an observation function 
y(t) in the following way: 

w’(t) = A,w(t)+G,y(t), w(t) E “?ci, (2.4) 

u(t)=F,w(t)+Ky(t). (2.5) 

This is called a compensator; w(t) is the cornperwator state, and ‘?JJ is the 
compensator state space. We can combine the equations (2.1-3) and (2.4-5) 
to form the extended system: 

-g; t= ( P ( A +G,Bb(c yj( Z)(t)+ (:)9(t)? cw 

z(t)= (D o)( ;)(t,. (2.7) 

We denote 

A, = (2.8) 

and call this the extended system matrix. This mapping acts on the extended 
state space Xe: = % @ ‘?K. There are two natural mappings between $6” and 
%: the natural projection P: $6” + %, defined by 

p(;)=x, 

and the canonical imbedding Q:% -+ SK”, defined by 

(2.9) 

(2.10) Qx=(;). 
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A typical form of a control problem is now: given the system (2.1-3) find a 
compensator of the form (2.4-5) such that the closed-loop system (2.6-7) has 
certain properties. For the algebraic regulator problem, these properties can 
be specified in terms of invariant subspaces of the extended system matrix. 
We shall denote the “bad subspace” of A, by %;(A,), so 

%;,(A,)= c c ker(hI-A,)“. 
Reh>Onr~ 

(2.11) 

This subspace of ?L’ contains the “unstable modes” of A,, i.e., the eigendi- 
rections corresponding to nondecreasing solutions. We say that we have 
output stability in the closed-loop system if 

YYx(A.) c ker( D 0). (2.12) 

This means that the output z(t) will converge to zero if no external dis- 
turbance is present [q(t) = 01. Another property of interest is disturbance 

decoupling: we say that the closed-loop system has this property if there exists 
an A,invariant subspace b% such that 

im cd17,cker(D 0). 

This means that the behavior of z(t) is completely unaffected by that of q(t). 
If we have both output stability and disturbance decoupling, then the output 
z(t) converges to zero regardless of the behavior of 9(t). Note that these 
properties can also be formulated in terms of subspaces of % (2.12) is 
equivalent to 

P93i”,(Ay)c kerD, (2.14) 

and (2.13) is the same as 

im E c Q-‘“sn, c P"X c ker D. (2.15) 

A third property will be discussed below. 
For a while, let us concentrate on the pair (A, B) of system mapping and 

input mapping [see (2.1)]. A subspace Cl’-of ‘X is said to be (A, B)-invariant if 
there exists a “state feedback mapping” F: 5% + GI1, such that ?ris (A + BF)- 

invariant. If %cis (A, B>invariant, the set of ail mappings F: %!X + u?L such that 



THE ALGEBRAIC REGULATOR PROBLEM 491 

(A+BF)?I^c‘-V is denoted by F(T). An alternative characterization of 
(A, B>invariance can be given as follows [2, Lemma 4.21: 

LEMMA 2.1. A subspace ?;of !?C is (A, B)-invariant if and only if 

A?l”c?‘+imB. (2.16) 

From this, it is easily seen that the set of (A, B)-invariant subspaces is closed 
under subspace addition. Consequently, the set of (A, B)-invariant subspaces 
that are contained in a given subspace 3c (which set is never empty, because 
the zero subspace is (A, B)-invariant) ‘has a unique largest element which is 
denoted by ?r*( X). An algorithm to construct Y*(X) for any given 3c can be 
found in [2, p. 911. 

Given an (A, B )-invariant subspace ?c, it will be important for us to know 
how the eigenvalues of A + BF can be manipulated when F may be chosen 
from the class F(Y). To describe the situation, it is convenient to introduce 
the following notation. If C, and C, are invariant subspaces for some linear 
mapping T, and C, c C,, then T: C,/C 1 will denote the factor mapping 
induced on the quotient space (?s/c, by the restriction of T to !&. In matrix 
terms, this simply means that if the matrix of T can be written, with respect 
to a suitable basis, in the block form 

(2.17) 

then the matrix of T: C,/C, is T,,. If C, = {0}, we shall write T: C, instead of 
T: C,/{O}. We can now formulate the following result ([24]; see also [2, 
Corollary 5.2, Theorem 4.41): 

LEMMA 2.2. Let ?i be an (A, B)-invariant subspace. Then the smallest 

(A + BF)-invariant subspace containing im B CI li is the same for all F E 

F(V). Denote this subspace by CR, and let S be the smallest A-invariant 

subspace containing both im B and ?;. Then S is (A + BF)-invariant for all 

F, and we have for all F,, F, E F(Tf) 

A+BF,:%/S=A:%,/S, (2.18) 

A+BF,:CV/%=A+BF,:?l/%. (2.19) 

Moreover, for any real polynomials p,(A) and p2(X) with deg(p,) = dim 5 - 
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dim?’ and deg( pz) = dim 3, there exists an F E F(Y) such that the char- 
acteristic polynomials of A + BF: S/?Tund A + BF: %ure equal to p,(h) and 
p2( A), respectively. 

The content of this lemma can conveniently be expressed in the form of a 

diagram, in which the words “free” and “fixed” refer to the eigenvalues of 

A + BF when F may be chosen from F(Y ): 

5% 
fixed 

s 
free 

li 
fixed 

9, 
free 

-I (0) 

A + BF 

[F E F(‘-UI 

(2.20) 

An (A, B)-invariant subspace Y‘is called a controllability subspuce if a(A + 
BF: T) is free [2, p. 1021, and it is called strongly invariant if a(A + 
BF: Xi/Y) is fixed. If there exists an F E F(CiT) such that a(A + BF: y)C 

(A E ClRe X < 0}, then ‘iiis called a stabilizability subspuce. 
For brevity of notation, let us write 

C, = {A E CIReh < 0}, C,=C\C,. (2.21) 

(Other partitionings of the complex plane may be used, for instance to express 
stronger stability requirements. The effects on the theory will be none, 
provided that the partitioning is symmetric with respect to the real axis, and 

Cg n R * 0 .) We have already introduced %:(A,), and the notation 

%;(A,), %;,(A), %X,(A)> e c. t will refer in an obvious way to the modal 
subspaces corresponding to the part of @ indicated by the subscript. For 
any subspace C, we use the following notation for the smallest A-invariant 
subspace containing C and for the largest A-invariant subspace contained in c: 

(Ale): = c AkC, 
kcZ+ 

(2.22) 

(CIA): = k2z A-kC. 
+ 

(2.23) 
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A strongly invariant subspace of particular interest is 

5x *=%,(A)+(A]imB), stab ’ 
(2.24) 

which is easily seen to be the largest stabilizability subspace in %. More 
generally, one can prove [19, p. 26; 2, p. 1141 that the set of all stabilizability 
subspaces contained in a given subspace X has a unique largest element, 
which will be denoted by Yg*(X). Let V be an (A, B)-invariant subspace. It 
is seen from Lemma 2.2 that there exists F E F(Y) such that a(A + 
BF: %/%)c Q=, if and only if S + ?$(A)= %, where S = (Alim B + 7’). 
In this case, we shall say that Yis outer-stabilizable. It is easily proved that 
(A (im B + V) = ( A]im B) + Tf, and so we obtain the following characteriza- 
tion of outer-stabilizability. 

LEMMA 2.3. An (A, B)-invariant subspace ?Tis outer-stabilizable if and 
only if 

Y+ Xstab = 96.. (2.25) 

Everything that has been said above about the pair (A, B) can be 
dualized to statements about the pair (C, A) of output mapping and state 
mapping. We shall quickly go through the most important notions. A sub 
space ‘3 of 5X is said to be (C, A)-invariant if there exists a mapping 9 : ?! -+ 5% 
such that 5 is (A - GC)-invariant, or, equivalently, if 

A(3 nkerC) c T. (2.26) 

The set of all mappings G: 3 -+ % such that (A - GC)‘?j c 03 is denoted by 
G( 5 ). A (C, A)-invariant subspace ?j is said to be a detectability subspace if 
there exists G E G( oj ) such that a( A - GC: %/?J’ ) c @s. For every subspace 
G, there is a smallest detectability subspace containing it, which will be 
denoted by ?J:( & ). We define 

5% * =9:((O)) = !Xb(A)n(kerC]A). det ’ (2.27) 

This is the smallest subspace modulo which the state can be detected when all 
inputs are zero. 

We now return to the specification of properties for the closed-loop 
system (2.6-7). It is easily seen that the subspace Q!Xdet is always A, 
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invariant, and that A : Xdet is similar to A, : QXdet. The subspace P- ‘( !XYet + 
XStah) is also always A,-invariant, and A, : Xe/Pel( 5Xdet + ‘Xstab) is similar to 
A : ~X/~Yu,,, + Xstab). This leads immediately to the following result. 

LEMMA 2.4. For any compensator of the form (2.4-5) applied to the 

system (2.1-3), the extended system matrix A, given by (2.8) will satisfy 

dim ‘XL( A, ) > dim !XXdet + codim( Xdet + !XXstab ) . (2.28) 

We shall say that the closed-loop system (2.6-7) is internally stable if 
equality holds in (2.28). This nomenclature will be explained in the next 
section. 

Finally, we shall need a concept that is related to the triple A, B, and C. A 
(C, A, B)-pair [17] is an (ordered) pair of subspaces (5,Y) in which 9 is 
(C, A)-invariant, ?:is (A, B)-invariant, and 9 c ?: The following result [18, 
Lemma 4.21 will be instrumental. 

LEMMA 2.5. Let (5, Y) be a (C, A, B)-pair. Then there exists a mapping 

K : %I + 0X such that (A + BKC)‘!? c ‘Y 

This means that in situations where we are allowed to replace A by 
A + BKC (applying a preliminary static output feedback), it is no restriction 
of generality to assume that A3 c 71: Note that the properties we discussed 
above for the pair (A, B) are all feedback invariant: they would have been the 
same for any pair of the form (A + BF, B). Likewise, the properties relating 
to the pair (C, A) would have been the same for any pair of the form 
(C, A - GC). Consequently, the change from A to A + BKC changed neither 
the input-testate nor the state-to-output structure, which makes it a transfor- 
mation that is applicable under many circumstances. If we have to do with 
several (C, A, B>pairs (Ti,y) (i = l,..., k), there does not necessarily exist a 
K such that (A + BKC)Ti c 3; for all i; we shall say that the pairs (T, ‘T() are 
compatible if such a K does exist. 

3. PROBLEM STATEMENT 

A common control setup for a plant to follow a reference signal in the face 
of disturbances is depicted in Figure 1. Here, the prefilter, the precompensa- 
tor and the feedback compensator are elements that are to be constructed by 
the designer in such a way that the error will tend to zero for every choice of 
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---__------------------------________ ----‘I 
1 

disturbance 

generator 

r---------- ------ , r_-----------____~_-_-_~~ I 
1 . I 

reference ’ I 
generator 

t, prefilter y plant 
I I 
’ I 

1 error 
, L_____-----.__-J 

I ’ I 
’ I 

L-----___, 

L----------J, 
feedback 

I 
I I 

compensator I 
I I 
L-_______________-_____Av-1 

FIG. 1. Control scheme. 

initial conditions in the reference generator, the disturbance generator, and 
the plant. The diagram can be reorganized to display more clearly the 
interface between the given elements and the elements that are to be 
constructed, as shown in Figure 2. 

The scheme can be simplified and generalized at the same time, as shown 
in Figure 3. All the given elements have been taken together under the name 
“system,” and the control elements are represented by one feedback processor 
called the “compensator.” Also, an additional external disturbance has been 
added for which no knowledge of the dynamics is assumed. (This may be 
quite natural, for instance, when this disturbance is used to model a lack of 
information about certain system parameters.) The error has been renamed as 

____ --------___---~--- --- ----, 

; -.piizq I 

I b 
error 

observation 

I 1 4 
------------- _____---------_--_I 

FIG. 2. Reorganized control scheme. 



496 J. M. SCHUMACHER 

(external) output 
disturbance 

+ 
system (= error) 

+ 

control 

input observation 

- compensator + 

FIG. 3. Simplified and generalized control scheme. 

simply “output”; the longer term “variables-to-be-controlled” is also some- 

times used. 
We are now in the situation described in the previous section. The system 

is described by the equations (2-l-3), the compensator equations are given by 
(2.4-5), and the closed-loop system as a whole is described by (2.6-7). The 
question is, of course, whether we are still able to properly define our control 
objectives in the present context, in which the distinction between plant, 
disturbance, and reference has seemingly disappeared. 

To answer this question, we break down the system mapping A using the 
chain of invariant subspaces {O} c XXdet c Xdet + !Xstab c Xx. Taking into 
account the facts that !Xdet c ker C and that im B c XXdet + XXstab, this enables 
us to rewrite the equations 

x’(t) = Ax(t)+&&), (3.1) 

y(t) = Cx(t) (3.2) 

in the following way: 

x;(t) = A,,+)+ 4,x,(t)+ AA&)+ Q(t), (3.3) 

x;(t) = A,,+,(t)+ A,,%(t)+ B,u(t)> (3.4) 

x;(t) = A&(t)’ (3.5) 

!I@> = CZ%@>+Cc,&>. (3.6) 

Pictorially, we have the diagram in Figure 4. This makes it natural to 
interpret xl(t) (corresponding to A : Xdet) as representing irrelevant plant 
variables. That is, we assume that we are not in the fundamentally hopeless 
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situation in which there are unobservable unstable relevant plant modes. The 
vector rs(t) is naturally interpreted as representing the state variables of the 
reference and (internal) disturbance generators. Again, supposing that rs(t) 
partly represents plant variables would bring us into a fundamentally wrong 
situation, this time because of the presence of unstable uncontrollable plant 
modes. It can be argued (see for instance [7]) that it is reasonable to assume 
that !Kdet = {0}, but we shall take the option of performing the mathematical 
analysis in full generality, to see if the outcome agrees with our interpreta- 
tions. 

With this background, it is now reasonable to formulate the following 
specifications for the closed-loop system. To ensure that the system output 
(which represents the difference between reference signal and actual plant 
behavior) will tend to zero in spite of the internal and external disturbances, 
we ask for output stability and disturbance decoupling [(2.12) and (2.13)]. 
Moreover, we want the plant to be stabilized. Using the interpretation 
discussed above, this requirement is expressed by the condition of inter4 
stability: 

dim%i( A,) = dim 9Ldet + codim( %,,, + Xjistab). (3.7) 

So the algebraic regulator problem that will be discussed in this paper is: 
Given a system of the form (2.1-3), find necessary and sufficient conditions 
for the existence of a compensator of the form (2.4-5) such that the 
closed-loop system (2.6-7) has the properties of output stability, disturbance 
decoupling, and internal stability; and give an algorithm to construct such a 
compensator, if one exists. We use the qualifier “algebraic” because this 
problem does not ‘include issues like sensitivity to parameter changes, the 

u(t) 

FIG. 4. Decomposition of a general linear system. 
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response of the system to signals other than those it has been designed for, 
efficient and numerically stable computational algorithms, and so on. It will 
be shown in the Appendix that the algebraic regulator problem as it is 
formulated here is a strict generalization of the problem considered in [l] (also 
in [Z, Chapter 71). 

4. NECESSITY 

We start with the following simple but basic observation (cf. [17]). 

LEMMA 4.1. Let A, be an extended system matrix of the form (2.8), and 

suppose that %l,...,‘Xk are A,-invariant subspaces. Then the pairs 

(Q-l%,, Pa,),. . . ,(Q-“X,, PX,) are compatible (C, A, B)-pairs. 

Proof. TakeiE{l,..., k), and let x EQ-‘>Xi nkerC. Then 

and consequently 

We see that Ax E “Xi, showing that QP ‘9Ri is (C, A>invariant. Next, let 
x E Pai and take w E ‘?t such that 

Then 

Ax+B(KCx+F,w) 

G,Cx + A,w (4.2) 

Hence, Ax + B( KCx + F,w) E P9Ri, which implies that Ax E P9Rj + im B 
and that P$Ri is (A, B)-invariant. Finally, let x E QP ’ 91Li. We have 

(4.3) 
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which shows that (A + BKC)Q- “?I& C P?Il&. Since K does not depend on i, 
this completes the proof. n 

We now want to bring in the aspect of eigenvalue assignment. First, recall 
the following result, which can be proved by standard means. 

LEMMA 4.2. Let T: % + % be a linear mapping, and let C, and C, be 
invariant subspaces for T, with C, c C,. Then, the following are equivalent: 

a(T:C&,) = C,, (4.4) 

(XI-T)-‘C,ne,=c, V’XECb, (4.5) 

(hZ-T)C,+e,=l2, VXECb. (4.6) 

Suppose that 9: and V, are (A, B> invariant subspaces, and V, c Vs. We 
shall say that (A, B) is stabilizable between V, and V, if there exists an 

FE F(?I',)nF(1T,) such that a( A + BF: V,/?r,) c C,. We have the follow- 
ing characterization of this property. 

LEMMA 4.3. Let V, and V, be (A, B>invariant subspaces, with TrI c V2. 
Then (A, B) is stabilizable between V, and V, if and only if 

(XI-A)‘Vs+Vr+imB=~s+imB tlAEQ:b. (4.7) 

Proof. First, suppose there exists F E F( ?T,)nF( V,) such that A + 
BF: v,/‘v, is stable. According to Lemma 4.2, we then have 

Adding im B on both sides now leads immediately to (4.7), if one uses the 
obvious equality 

[XI-(A+BF)]?r,+imB=(XZ-A)x+imB. (4.9) 

Next, suppose that (4.7) holds. Construct a mapping F, E F(?T,)nF(?T,) by 
first defining F, on ‘v, such that (A + BF,)?r, c v,, then extending F, on ‘T, 
in such a way that (A + BF,)?r, c V,, and finally extending F, in an arbitrary 
way to a mapping defined on all of %. Consider the controllability subspace 

%‘,2:=(A+BFOlimBnV2) (4.10) 
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Define A, : =A+BFO:~it,,andletR:%-+G2LbesuchthatimBR=imBn 
‘5;. Write $: = BR. By definition, we have (A,lim $) = $i%s, and so it 
follows from Lemma 2.3 that every (A,, $)-invariant subspace of %s is 
outer-stabilizable. In particular, there exists an Fi : 9~~ + % such that (A, + 

B,,Fi)(%s n V,)c qt, n V, and a(A, + $Fi: %s/%, n ?rl))c C,. The 
mapping FO + RF,, which is defined only on as, can be extended to a 
mapping F: % + 9, in such a way that F E F( V,) n F( U;). We claim that 
this mapping F satisfies a(A + BF: v,/?r,) c C,. 

To prove this, first note that A + BF:(%,, + V,)/‘V, is similar to A + 
BF: %J(%~ n ?r,) = A, + B,F,: CkL2/(Ck2 n V,), which is stable by con- 
struction. Furthermore, we have given that (4.7) holds, and this implies [using 
(4.9) again] 

[hz-(A+BF)]?r,+?r,+imB=~.+imB VXEC~. (4.11) 

Taking intersections with ‘Ys on both sides, we get 

[h~-(~+~~)]71^,+?T,+(im~n?;)=?r, VAEC~. (4.12) 

Because im B n 3: c ?RL, c VL2, this implies 

[AZ-(A+BF)]CV,+‘-&+%2=?i, VXECb, (4.13) 

which, by Lemma 4.2, means that a( A + BF: Vs/( vi + 9s)) c C,. The 
proof is done. n 

We are going to apply this lemma in the following way. 

LEMMA 4.4. Let A, be an extended system matrix of the form (2.8). Zf 
OR, and OR, are both A,-invariant subspaces satisfying OR, c %, and 
a(A,: !XJ9R,)c C,, then the pair (A, B) is stabilizable between PX, 
and PC&,. 

Proof. Take x E PGslt,, and let w E ‘% be such that 

Also, take A E C,. By Lemma 4.2, there exist vectors 
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such that 

(4.14) 

In particular, we get 

x = (AZ - A)x, - B(KCx, + Z+~a)+xi. (4.15) 

This shows that 

P%, c (XI - A)Z’X, + PGX, +im B VAEG,. (4.16) 

By the (A, B)-invariance of PX,, this is the same as 

P!R,+imB=(AZ-A)P9R,+Z’GX,+imB Vh E G,. (4.17) 

An application of Lemma 4.3 now gives the desired result. n 

Everything that has been said above about the pair (A, B) can be 
dualized into statements about the pair (C, A). If Ti and T2 are (C, A)- 
invariant subspaces such that Ti c Ta, we shah say that the pair (C, A) is 
detectable between TI and Tz if there exists a G E G(gi)nG( Ta) such that 
a( A - CC: “s, / Ei;) c Q: g. The following results correspond to Lemma 4.3 and 
Lemma 4.4, respectively: 

LEMMA 4.5. Let TI and “ji be (C, A>invariant subspaces, with TI c T2. 
Then (C, A) is detectable between TI and Tz if and only if 

(AZ-A)-‘TrnTankerC=TrnkerC V’XEQ=~. (4.18) 

LEMMA 4.6. Let A, be an extended system matrix of the form (2.8). Zf 
OX, and Gx, are both A,-invariant subspaces, satisfying Em, C a, and 

a(A,: Em,/=& 6:,, then the pair (C, A) is detectable between Qpl?X, 
and Q- ‘?I&. 

It is useful to note the following result, which is a direct consequence of 
Lemma 4.3. 
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COROLLARY 4.7. Suppose that ?r,, 7i,, and v, are (A, B>invariant 
subspaces, with V, c V2. Zf the pair (A, B) is stabilizable between v, and 
‘IL, then (A, B) is also stabilizable between V, + V, and V, t ?r,. 

After these preparations, it is easy to give an extensive list of necessary 
conditions for the algebraic regulator problem to be solvable. 

PROPOSITION 4.8. Suppose that the compensator (2.4-5) provides a solu- 
tion to the algebraic regulator problem for the system (2.1-3), so there exists 
an A,-invariant subspace 9R such that (2.13) holds and such that 
a(A,: ?X’/?IR) c C,, and wwreover the dimensional equality (3.7) holds. 
Write Y: = P%, 5: = Q-‘9R, ?&so: = P%X”,(A,), and 5,: = QP1%i(Ae). 
Then the following is true: 

(i) the pairs (TO,TO) and (“5,‘V) are compatible (C, A, B)-pairs, 
(ii) TO C 5 and TO C ?r, 
(iii) imEc5 c?i’ckerD, 
(iv) (A, B) is stabilizable between ‘?& and Yand between Yand ‘X, 
(v) (C, A) is detectable between 9, and 9 and between T and X, 

(vi) 7; n (%kt + xx,,, ) = %kt . 

Proof. Conditions (i) to (v) follow immediately from, respectively, Lemma 
4.1, the fact that %i( A,) c GIR, the remark leading to (2.15), Lemma 4.4, and 
Lemma 4.6. To prove (vi), first note that TO is, by (v), a detectability 
subspace. Therefore, !Xdet c To c ‘I$, and so we have 

%kt c ?i, n ( %kt + %ab 1. (4.19) 

From (iv), it follows that V, is outer-stabilizable, so that TO + !&rat, = % 
(Lemma 2.3). Consequently, the following dimensional relations hold: 

dim[ 3: n ( EXdet + !?&, )] = dim?& + dim( XjCdet + ?XXstab) - dim X 

= dim7i, - codim( ?X+, + !KStab ) 

< dim!Xz(A,) - codim(‘X,, + %.,,,) 

= dim !XCdet. 

This shows that in fact equality holds in (4.19). 
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The list is not completely economical; for instance, it is easy to see that (ii) 
already implies that the (C, A, B>pairs (T,,, V,) and (5, ?r ) are compatible. 
The extras have been obtained with little effort, however, and the form of the 
list is convenient for the next section, where we are going to prove that the 
conditions given above are also sufficient. 

5. SUFFICIENCY; MAIN RESULT 

There is a general method of compensator construction, in which it is also 
possible to keep track of the relation between invariant subspaces in the 
constructed closed-loop system and certain (C, A, B)-pairs in %. Here, we 
shall only need the following relatively simple result; more elaborate versions 
are given in [18, Theorem 4.11 and [19, pp. 63-641. The proof is basically 
easy, consisting mainly of using natural isomorphisms between subspaces of % 
and of ‘ZX’, and can be found in the cited references. 

LEMMA 5.1. Let the system (2.1-3) be given. Suppose that we have a 

(C, A, B>pair ($ V,), an F E F(Y,) such that ker F 2 ycT,, and a G E G(TJ 
such that imG c Y(. Then a compensator of the form (2.4-5) can be defined 
as follows: Let W be a real vector space of dimension dim?l;, - dirnTc. Let R 
be a mapping f;om V, onto % such that ker R = Tc, and let R+ be any right 
inverse of R. Set K = 0, F, = FR+, G, = RG, and A, = R(A + BF - GC)R+. 
The extended system matrix that is obtained as 

A BFR + 
RGC R(A+BF-GC)R+ (5.1) 

has the following eigenvalues: 

a(A,)=a(A+BF:~~)ua(A-GC:%/Tc). (5.2) 

Moreover,if(‘??T,?f)isa(C,A,B)-pairsuchthatATc?f,V,~c5 c?rccV,, 
(A + BF)?T c V, and (A - GC)T c 9, then the subspace 9R, of % defined 

by 

a:=( (;)Ixcq+( (;x)lxev) (5.3) 
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is A,-invariant. The subs-pace 

is also A,-invariant, and the following similarity relations hold: 

A,: T/( ‘3, + ‘X,) = A - CC: X./5 (5.5) 

A,: (3~ + %,)/%, s A,: ?IR/(?IL n %,) = A - GC: T/Tc (5.6) 

A,:(GX+~,)/~~A,:~,/(GX~E~,)~A+BF:?~,/?~’ (5.7) 

A,:%n%,~A+BF:?r. (5.8) 

Pictorially, the relations (5.5-8) can be described as shown in Figure 5. 
In order to translate data on a chain of (A, B)-invariant subspaces into 

data on a feedback mapping, the following lemma is useful. 

LEMMA 5.2. Suppose we have a chain of (A, B)-invariant subspaces 
(0}=v,c?i’,c~~~ CT_, c ‘3; = %. Also, let mappings Fi E F(T;)n 
F(‘Tf_,) be given, for i=l,..., k. Then there exists a mapping F E F( v, ) 
n ... nF(T_,) such that A+ BF:y/?:_,= A+ BFi:q/YIPl for all 
i E (l,...,k}. 

Proof Select basis elements {x:, . . . ,xkl, x12,. . . ,xzl,. . . ,xt,. . . ,xi,> such 
that {xi,. . . ,xil,. . . ,xi,. . . , PC:,} forms a basis for V; for all i E (1,. . . , k}. Define 
FbyFx;=F,xj(i=l,..., k; j=l,..., n,). Then F satisfies the requirements. w 

a 

b 

A-GC 

X Xe 

a. 

Vc 
M+M, 

C 

M i:. C MC 

V 

d 
MnM, 

(0) (0) 
A+BF Ae 

FIG. 5. Regulator construction. 
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To illustrate the proof, consider the block matrix representations for the 
mappings A + BF, (i = 1,. . . , k) and A + BF with respect to the selected basis: 

* * . . . 

0 . 
. . 
. . 
. . 
. . 
. . 
. . 
. . 
. . 
0 * ... 

A+BF, 

* . . . * 

* . . . * 

0 . . . 0 

A+BF, 

. . . 

(* 

0 

(0 

. . . * * 
. . 
. . 
. . 

. . . * . 

. . . 0 * 

. 0 

. . 

. . 

. . 
. . . 0 0 

* . . . 

0 . . . 

A+BF 

* . . . * 

* . . . * 

\ 

/ 

* * 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

0 * 

. . . 

It is now not difficult to show that the necessary conditions derived in the 
previous section are also sufficient. 

THEOREM 5.3. The algebraic regulator problem for the system (2.1-3) is 
solvable if and only if there exist two compatible (C, A, B )-pairs (TO, To) 
(5, V) such that 

(ii) imEc5 C‘VckerD 
(iii) (A, B) is stabilizable between V, and Yand between Yand 5X 
(iv) (C, A) is detectable between 9, and ‘5 and between 9 and %, 

(v) V, n (Set + Ktab ) = xdet. 

and 

Proof. In view of Proposition 4.8, it remains to show the sufficiency of 
the conditions. Employing a preliminary static output feedback if necessary, 



506 J. M. SCHUMACHER 

we may assume that A’$ c ‘Tl, and A’3 c %i‘(see Lemma 2.5 and the remarks 
following it). It follows that there exists an F, E F( 7,) with ker F, 15~. Using 
(iii) and Lemma 5.2, we see that there exists an F E F( ‘II;, ) n F( ii“ ) such that 
ker F I ‘TO and a(A + BF: ‘%/%O)C Q:,. Using (iv) and the dual of Lemma 
5.2, we find that there exists a G E G( &)nG(~! ) such that a( A - 
GC: :X/$) c C,. Now we apply the compensator construction of Lemma 
5.1, using Y0 for T? and ?Y for ?,. The invariant subspace ‘?K related to the 
pair (Y, ‘7.) takes care of the disturbance decoupling property, by condition 
(ii). From therelations (5.5-8) we see that 

Consequently, P%‘,( A,) c 7’ c ker D and we have output stability. In fact, 
we see from (5.8) that dim%E(A.) < dim?;. By condition (v), we have 
dim’?‘, < codim(“X,,, + ‘Xstah)+dim!Xd,,, and we conclude that the com- 
pensator constructed above leads to internal stability as well. n 

The proof is constructive once the pairs (:TO, ?k) and (5, Ye) are given. 
We shall now proceed to discuss how the existence of these pairs can be 
verified by an algorithm that will also construct such pairs, if they exist. 

6. A VERIFICATION ALGORITHM 

It may not seem easy to verify the conditions of Theorem 5.3, because 

they are stated in terms of two (C, A, B)-pairs, which gives us four variable 
subspaces. Without much effort, one can see that 5” can always be replaced 
by j??idet and 5 by Tg*(im E), but that still leaves us with two variable 
subspaces. It is possible to express the conditions in terms of 3; (as in [18] 
and [19]), but concentrating on Twill lead to a result that is more attractive 
from a numerical point of view. Before we come to this, some preliminary 
work is needed. 

LEMMA 6.1. Let 71’ be un (A, B)-invariant subspace, and let ?k be 
defined by 9% = (A + BF lim B n ‘t<) (F E F( 7:)). (This defines 6% uniquely: 

see Lemma 2.2.) If 5; is an (A, B>invariant subspace such that 3 c 7; c ‘1”, 

then ‘Ti is (A + BF>invariant for all F E F(Y). 

Proof. Take F E F('C-), and F, E F(a;). We have (A + BF)rfl c (A + 

BF)Ci’ C ‘1;: but also (A + BF)?r; c (A + BF,)3; + B(F - FO)vl c ?I; + 
im B. Hence (A + BF)Y; c ?r n(?rr +imB)c 5: + % c ?ri. n 
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LEMMA 6.2. Let V, be an (A, B>invariant subspace contained in a 
subspace X. The set of all (A, B)-invariant subspaces Vcontained in x and 
containing V,, that are such that (A, B) is stabilizable between V, and V, 
contains a unique maximal element, which is given by V, + V,*(X). 

Proof. It follows immediately from Corollary 4.7 that (A, B) is stabiliz- 
able between V, and V, + V,*(X). Conversely, let ?r be an (A, B)-invariant 
subspace with V, c Y c X, such that (A, B) is stabilizable between TO and 
‘V. Then there exists an FEF(CV~)~F(Y)~F(‘V*(X)) such that a(A+ 
BF: V/~,)C C,. By Lemma 6.1, we automatically have F E F(?T,*(X)) as 
well. Now, on the one hand, 

=o(A+ BF:[‘lig*(%)+rV^]/[?F(X)+vO]) 

c a(A + BF: ‘V*(%)/7;,*(%)) Cc,, 

but on the other hand, 

o(A+BF:?Tj{‘?in[?r,*(t7i)+‘?i,]))ca(A+BF:~/?T,)cC~. (6.2) 

It follows that 

o(A+BF:~/{%[~;(~J~)+~~]})=~> (6.3) 

or V C V:(X)+ V,. 

We can now reformulate Theorem 5.3 as follows. 

THEOREM 6.3. The algebraic regulator problem for the system (2.1-3) is 
solvable if and only if there exists an (A, B>invariant subspace Ysuch that 

?r c ker D, (6.4) 

?r + %,,& = 5% > (6.5) 

?rn(~~et+~stab)=~det+CVg*(kerD)y (6.6) 

9z(irn E) c ?r. (6.7) 
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Proof, To prove the necessity, we assume that the conditions of Theorem 
5.3 hold. So we have two compatible (C, A, B)-pairs (To, CI’,) and (9, 1;) 
satisfying (i)-(v). We shall show that V0 + Vg*(ker D) satisfies the conditions 
(6.4-7). From (i) and (ii) we immediately have (6.4), (6.5) follows directly 
from (i) and (iii) with use of Lemma 2.3, and (6.7) is obtained from (ii) and 
(iii) by an application of Lemma 6.2. Finally, the obvious fact that CV,(ker D) 

= Klet + Ktab entails, by condition (v), 

(x + y(kerD))n(%,,, + Ktab > = r% n ( xXdet + xXstab > + Ticker D > 

= Xdet + ?Ir,*(ker D). (6.8) 

For the sufficiency, we note that ‘xdet C ?iJim E) C ?1’ C ker D, and we 
consider the chain of (A, B>invariant subspaces {0} C XXdet C XCdet + 
‘JT,*(ker D) c ?c c 2%. Corollary 4.7 shows that (A, B) is stabilizable between 

!Xdet and 9Cdet + ?ig(ker D), and (6.5) shows that (A, B) is also stabilizable 
between 7: and !X. By Lemma 5.2, there exists an F E F(6XXdet)nF(Xd,t + 

?ip*(ker 0)) n F(Y) such that ker F 1 !XjCdetr a( A + BF : (sCd,t + 

Tz(ker D))/ SCdet > c Q= gr and a(A + SF: xc/v) C C,. Now, define ‘tl;, by 

V0 = %.,( A + BF). (6.9) 

It is clear that ?Xdet c V, c T, and also that ?TO n ( !Xdet + Vz(ker D )) = !Xdet. 
Using (6.6) we see that condition (v) of Theorem 5.3 is satisfied. We also see 
that (iii) holds. The other conditions are easily verified, if we define & = !Kfidet 
and 9 = Tg*(im E). n 

The following slight variation of this result will be useful. 

COROLLARY 6.4. The algebraic regulator problem for the system (2.1-3) 
- is solvable if and only if 

?r* (ker D ) + GxStab = 5X 

and there exists an (A, B)-invariant subspace Vsuch that 

‘I: c Y*(ker D), 

?r+{‘XX,,, + [71’*(kerD)n!XXstab]} = V*(kerD), 

?1’ n { EXdet + [ ‘V*(ker D)n %Estab]} = ‘Xdet + C7F(ker D), 

Tz(irn E) c ‘Jr. 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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Proof. Necessity: (6.10) follows from (6.4) and (6.5), (6.12) is obtained 
by intersecting both sides of the equality in (6.5) with ?T*(ker D), and (6.13) 
is obtained in the same way from (6.6). Sufficiency: For (6.5), add ??&,, on 
both sides of (6.12) and use (6.10). Note that ??Ldet c lrby (6.13) [or (6.14)], 
and consequently 

= ‘-v (7 (‘%,,t + %M, >. (6.15) 

Now use (6.13) again to obtain (6.6). n 

We see from Theorem 6.3 that the subspace ?r that we are looking for 
must be in between EXdet + V:(ker D) and ‘V*(ker II), and the advantage of 
the corollary is that the crucial conditions (6.12-13) are formulated in terms 
of these subspaces and of another subspace that is in between the two, 
%,,, + (Ir*(ker 0) n %&,,). Pictorially, the situation we are trying to establish 
looks like Figure 6. 

The important point to note here is that we are talking about (A, B> 
invariant subspaces that all contain the subspace 

%*(kerD): = (A+BFlimBn‘V*(kerD)) [FE F(‘V*(kerD))] 

(6.16) 

and which are therefore, by Lemma 6.1, all invariant for each F E 

Xdet + (V*(ker D) n&tab) 

A+BF 

FIG. 6. The splitoff property. 
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F(?i*(kerD)). Th’ is means that we can pick any F E F( ‘V*(ker D )) and see 
if a subspace Scan be “split off” as depicted in Figure 6. This comes down to 
requiring that the subspace 

[Xdet + (li*(kerD)n~stnb)l/[~,l,t + ~O--D)] (6.17) 

must decompose the quotient space ?T*(ker D)/[%,,, + CV,*(ker D)] with 
respect to the mapping induced by A + BF on this space. This is well known 
to be equivalent to a linear matrix equation (see for instance [2, p. 211). The 
conclusion that we have now reached should be compared to Theorems 7.3 
and 7.4 in [2]. In particular, the problem is trivial under the minimum-phase 

condition CV,*(ker D) = Y*(kerD)n 5X&b: in this case, the only solution of 
(6.11-13) is ?r= ‘V*(kerD). (This condition is often assumed in classical 
control theory, though not quite in this formulation.) 

To obtain a computational criterion, we may proceed as follows. Noting 
that it is necessary that !Xdet c Y*(ker D), we may set up a basis for % that is 
adapted to the chain of subspaces (0} c ‘XXdet + CV*(ker D) c EXdet + 
[Y*(ker D)n YLXstab] c ?T*(ker D) c 96 Next, we form block matrix represen- 
tations for the relevant mappings and subspaces. We get 

A= 

B= 

’ Bl 
0 
0 

\ B‘l 

$*(im E) = sp 
Tz 

> (6.18) 

Here, the fact that A,, = 0 and A,, = 0 is explained by noting that 

A( !Xdet + ‘Jr(ker 0)) n ‘Y*(ker D) 

c(!XXdet+V~(kerD)+imB)n‘V*(kerD) 

c !XCdet + CI’,*(ker D)+ (im B n Y*(ker D)) 

= Xdet + ?T,(ker 0). (6.19) 
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The same explanation goes for A,, = 0. We have used the fact that im B n 
‘Y*(ker D) c xdet + ?i,(ker D), which also entails B, = 0 and Ba = 0. 

A subspace Vsatisfies (6.11-13) if and only if it can be represented, with 
respect to the selected basis, in the following way: 

/I o\ 
‘c’= sp 0 x 

i 1 
0 I’ 
0 0 

(6.20) 

where X may be any matrix of suitable size. Such a subspace is (A, B)- 
invariant, by Lemma 2.1, if and only if there exist matrices Q and R such that 

’ All Al2X + Al, 
0 A22X + 43 
0 A 

\ 4, A,,X “+” A,, 

i Bl ’ 
o (R R) 

B” ’ 2 * 

\ 4, 

By elementary calculations, and using the fact that there exist, by the 
(A, Bkinvariance of Y*(kerD), matrices Fi such that A4i + B4Fi = 0 (i = 
1 , . . . ,3), we find that such matrices Q and R exist if and only if 

(6.21) 

A,,X + A, = XA,,. (6.22) 

(This is, of course, Sylvester’s equation [2, p. 211.) Furthermore, the condition 
(6.14) holds if and only if there exists a matrix S such that 

1 0 
0 x 
0 z 
0 0 

‘i 1 Sl 
s2 . 

(6.23) 
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This is true if and only if T4 = 0 and 

T, = XT,. 

Our conclusion is as follows. 

(6.24) 

COROLLARY 6.5. The algebraic regulator problem for the system (2.1-3) 
is solvable if and only if the following conditions hold: 

Y*( ker 0) + %&,, = %, 

5t(irnE)c ?i*(kerD), 

and there exists a matrix X satisfying 

XA, - A,,X = A,, , 

XT, = T,, 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

where the A- and T-matrices are defined as in (6.18). 

For any F E F( Y*(ker D)), A,, is the matrix of 

A + BF: V*(kerD)/{‘%+, + [CC’*(kerD)n %‘stab]}, (6.29) 

and A,, is the matrix of 

A+ BF:{‘?Ldet +~[Y’(kerD)nIti,,*~]}/[~i,, + ‘?z(kerD)] (6.30) 

Under the conditions (6.25-26) the mapping in (6.29) is similar to 
A : !X/(fXi,,, + 9Lstab), and so we can say that A, represents the signal 
dynamics. In view of the interpretations of Section 3 and of [2, Section 5.51, 
the eigenvalues of the mapping in (6.30) may be identified as the relevant 
unstable plant zeros. In particular, since we know that the equation (6.27) has 
a unique solution if and only if the matrices A,, and A, have no eigenvalues 
in common [26, p. 2251, we can say that a sufficient condition for (6.27) to be 
solvable is that the signal poles and the relevant unstable plant zeros are 
distinct. 

It should be emphasized that several numerical techniques are available to 
verify the conditions (6.25-28). The computation of Y*(kerD) and related 
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subspaces and mappings is discussed from the numerical point of view in 
[ZO-221. The equation (6.27) can be solved efficiently, at least in the case 
where the eigenvalues of A,, and A,, are distinct, by the method of [23]. 
Note that the size of A,, is the number of unstable plant zeros, whereas the 
size of A, is the number of signal poles, and both numbers will be moderate 
in very many situations. Finally, if (6.27) has a unique solution, then (6.28) is 
just a matter of checking. All this gives hope that the solution provided by 
Corollary 6.5 will be a good foundation for developing numerical software for 
general regulator problems. 

7. THE INTERNAL MODEL 

Francis [7] proved that, in the special case where the output is the same as 
the observation (C = O), any compensator that solves the algebraic regulator 
problem must contain a copy of the signal dynamics, the so-called “internal 
model.” A similar result was derived by Bengtsson [B] in a frequency-domain 
setting. Another form of the internal-model principle, which involves a certain 
reduplication of signal dynamics, can be derived from strong robustness 
requirements: see [2, Chapter 81. Below, we shall show how the internal 
model can be obtained from the setup presented here. Our result is slightly 
more general than that of Francis. 

PROPOSITION 7.1. Suppose that the compensator (2.4-5) provides a solu- 
tion to the algebraic regulator problem for the system (2.1-3), in which 
ker D c ker C. Then there exists an AC-invariant subspace “wO of % such that 
A, : ‘?Ko is similar to A : %I,/( FXdet + 5YJstab ). 

Proof. Write 3” =Q-‘%:(A,), ?j’o = P%“,(A,). We first show that 
50 = 3C&. Being a (C, A)-invariant subspace in ?r, c ker D c ker C, $ must 
in fact be A-invariant. So we have Ejb c (ker CIA). It is easily checked that 
Q((kerC]A)) is A,-invariant and that Q intertwines A: (kerC]A) and 
A,: Q((kerC]A)). F rom this, it follows that GJ, = !Xdet. 

From Proposition 4.8, Lemma 2.3, and the formulation of internal stability 
in (3.7), we see that 

dimcV, = dim%,eb(A,). 

This implies that there exists a mapping L: TO + ‘?K such that 

(7.1) 

(7.2) 
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Because ?‘O c ker D c ker C, we have, for x E To: 

(7.3) 

Writing Fa: = F,L, we find that (A + BFO)‘7i c 7; and ArLx = L(A + BF,)x 
for x E qi. This means that qli;, : = im L is A.-invariant, and that A, : 26 is 
similar to A + BF, : To /(ker L). Because ker L = Q- lL%z( A,) = YXdet, it re- 
mains to show that A + BF, : ‘10 / ‘?Xdet is similar to A : y /( ?Xdet + “X5,,,,). By 

Proposition 4.8 and Lemma 2.3, we have 

This concludes the proof. n 

The internal-model principle does not have to hold if there are observa- 
tions available that are independent of the output (ker D ct ker C). Indeed, 

model 

FIG. 7. Structure of the algebraic regulator problem: (1) %‘L);,,e, + ‘%;*(ker D), (2) 

3 r,rt + (?‘*(ker D) n YYsta,,). 
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the disturbance-decoupling problem may be solvable in nontrivial cases, and 
then any relation between the compensator dynamics and the disturbance 
dynamics is quite effectively precluded, since we did not make any assump- 
tion on the dynamics of the disturbance entering through E. The point is, of 
course, that the availability of observations independent of the output allows 
for a certain freedom of design, which may be used to advantage. The often 
used assumption C = D is to be considered as a nontrivial specialization. Let 
us conclude by showing pictorially, in Figure 7, how the internal model fits 
into the structure discussed in previous sections. In this picture, only the 
presence of the internal model depends on the assumption ker D c ker C; all 
the rest holds in general. 

8. CONCLUSIONS 

We have been able to solve a general version of the algebraic regulator 
problem, requiring output stability, internal stability, and disturbance decou- 
pling as well. The basic Theorem 5.3 has been derived in a quite straightfor- 
ward way, using material that is essentially elementary, as it is also likely to be 
useful for the analysis of other feedback design problems. Among this 
material, especially useful are Lemma 4.1, which gives the connection be- 
tween closed-loop invariant subspaces and (C, A, B>pairs, and Lemma 4.4, 
which adds the stability aspects to this connection. On the constructive side, 
the versatile compensator construction of Lemma 5.1 is important, and the 
“paste-together” Lemma 5.2 comes in handy. The main drawback of the 
results that we get from this type of analysis, like Theorem 5.3, is that 
the solvability condition involves the existence of a number of (C, A, B)-pairs 
having certain properties, so that it remains to be seen how this condition is 
going to be verified. For some problems, it is possible to have canonical 

choices for the (C, A, B)-pairs in terms of computable subspaces like Xdet, 
5g*(im E), etc. (Examples of this are the disturbance decoupling problem with 
stability [27, 28, 191, which is obtained as a special case of the problem 
treated here by taking Xstab = Eti, or the regulator problem under the 
minimum-phase condition.) For the general problem in hand, this turned out 
to be not completely possible. It was possible, however, to select one pivot 
subspace in which the solvability condition could be expressed (Theorem 6.3), 
and to derive a computational criterion for this subspace (Corollary 6.5) 
which also had a geometric interpretation as a decomposability condition. In 
this way, we obtained a fully effective solution. 

Life was also made somewhat easier by the use of the subspaces KXstab and 
Xdet rather than the subspaces ( A]im B) and (ker CIA) which were em- 
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ployed in [l] and [2]. There is a clear parallel here with the recent trend in 
transfer-matrix analysis to the use of factorizations in stable ratio&s instead 
of polynomials (see for instance 1121 and [14]). 

This paper started out with an engineering motivation, and therefore it is 
perhaps proper to give an assessment of the value of the results in engineering 
terms. Since we took just a few aspects from the multifaceted problem of 
control-system design and pursued these only, while ignoring all other aspects, 
it must be said that these results are of little immediate value. One particular 
problem is that we have assumed that the parameters of the system to be 
controlled are known exactly, which is never true in real life. The assumption 
would be justified, though, if we knew that the performance of a controller 
designed for a given system would not deteriorate badly if this system were 
replaced by another one which was “close” to it. To consider this type of 
question, it is obviously necessary to introduce concepts of “closeness” and to 
study, let us say, topological properties. There is no disputing that “natural” 
topologies defined separately on the mappings that make up the state-space 
description are compIetely unsatisfactory in the context of control systems. 
Instead, one should look for topologies defined in terms of transfer matrices of 
the form C(sl- A))‘B. 

This being true, why then didn’t we try to solve the problem from 
beginning to end in transfer-matrix terms? It is safe to say that, as long as the 
algebra remains fairly simple, the use of the transfer-function terminology 
provides a natural topological background which explains much of the famous 
engineering “feel” for control-system design. But if one wants to solve sharply 
defined problems which require an elaborate algebraic treatment, the use of 
this terminology no longer guarantees an easy linkup with topology, and one 

has to take this up as a separate subject. If this is necessary anyway, the 
option of using the state-space description becomes prominent again. In the 
fifties, Bellman and Kalman reemphasized the state-space method for various 
reasons, such as numerical advantages; but an important point also was the 
mathematical transparency that can be obtained from this approach. It is 
hoped that the present paper supports the contention that this argument is 
still valid. 

APPENDIX 

The purpose of this appendix is to prove that the algebraic regulator 
problem in our formulation is a strict generalization of the regulator problem 
with internal stability as studied in [l] (also [2, Chapter 71). In fact, the RPIS 
is obtained from the problem solved here by setting E = 0 in (2.1). 
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It is convenient to use a reformulation of Theorem 5.3 in terms of the 
subspace Va (rather than V, as was done in Theorem 6.3). The corresponding 
statement is as follows. 

LEMMA A.l. The algebraic regulator problem for the system (2.1-3) is 
solvable if and only if there exists an (A, B>invariant subspace v^, such that 

(i) ?r, c ker D 
(ii) ?z(im E) c cl6 + V:(ker) 0) 

(iii) VO + !XStab = 5X. 

(iv) xdet = ?r, n ( xd,, + Xab ). 

The proof requires no new techniques; see [18]. We now specialize to the 

caseE=O. 

PROPOSITION A.2. Consider the system (2.1-3) with E set equal to zero. 
The algebraic regulator problem is solvable if and only if the RPIS is solvable 
in the sense of [l], i.e., if there exists a feedback mapping F: % + % such 
that 

kerF 1 (kerC(A), &I) 

Xb(A+ BF)n((A]imB)+(kerC]A))c (kerC]A), (A.21 

%,(A + BF) c kerD. (A.3) 

Proof. First assume that there exists an F such that (A.l-3) is true, and 
write ?I’a = XC,(A + BF). We shall show that TO satisfies the conditions of 
Lemma A.l. Note that condition (ii) of this lemma becomes subsumed under 
condition (iv) in the special case E = 0. It is clear that conditions (i) and (iii) 
hold [ !Xb( A + BF) is outer-stabilizable, of course]. Also, it follows from (A.l) 
that (kerC(A) is (A + BF)-invariant, and that xdet c %JA + BF). So we 

get &let c V, n (XXdet + Xsta,,). To prove the reverse inclusion, note that 
(A.2) is equivalent to 

a(A+BF:((A] im B) + (ker C]A))/(ker CIA)) C Q=, 

c) a(A+ BF:(AI imB)/((A]imB)n(kerC]A)))cQ=, 

C, !?&,(A + BF)n(A] imB)c(A]imB)n(kerC]A) 

f, Xb(A + BF)n(A]im B) c (kerC]A). (A-4) 
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Because !X <,( A + BF)n (ker CIA) = !XCdet, this is equivalent to 

%!,(A + BF)n(AlimB) c 9Ldet. (A.5) 

The subspace U?Cstab is the same for the pair (A + BF, B) as it is for the pair 
(A, B), so we have 

!x ~ta,,=Xp(A+BF)+(AlimB) 

=!Xg(A+BF)+(%,(A+J3F)n(AlimB)). (A.6) 

Intersecting the extremes of (A.6) with txb(A + BF), we obtain 

%,,(A + BF)n!&,, = !XX,(A + BF)n(AlimB). (A.7) 

The conclusion from (A.5) and (A.7) is 

We already proved that ‘Xx,,, c Y$,, and under this condition (A.8) is equiva- 
lent to 

which is what we wanted to prove. 
Conversely, let us suppose that there exists an (A, B)-invariant subspace 

71; such that conditions (i)-(iv) of lemma A.1 hold. Then we have to construct 
an F satisfying (A.l-3). It follows from condition (iv), by intersection of both 
sides of the equality with %&A), that 

I’;, n 5X&A) = (0). (A.10) 

It is clear from this that we can define F on 76@%,(A) in such a way that 
ker F 3 !X & A) and (A + BF)CI’, c ‘li,. We can also arrange that ker F c :l)Cdet, 
because !X +r c 7; by condition (iv). It follows from condition (iii) that 
90 n %&A) is outer-stabilizable, and so Lemma 5.2 shows that F can be 
extended to a mapping defined on all of !X in such a way that a( A + 
BF: i”c/[ Y~CTS !Xg( A)]) c C g. We then have ‘X b( A + BF) c ?I; C ker D, which 
satisfies (A.3). Also, (ker CIA) = uXdet@ [(ker CIA) n X,(A)] c ker F. Fi- 
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nally, it is seen from (A.4) and (A.7) that (A.2) is equivalent to 
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(AX) 

But this is immediate from condition (iv) and the fact that !Xb(A + BF) c To. 
n 
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